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Potential for the Use of Hydrochloric Acid in Fission Reactor Fuel Recycle 

J. C. MAILEN and J.  T. BELL 

CHEMICAL TECHNOLOGY DIVISION 
OAK RIDGE NATIONAL LABORATORY 
OAK RIDGE, TENNESSEE 37831 

ABSTRACT 

The chemis t ry  and t h e  e f f e c t s  of t h e  u s e  of  hydrochlo- 
r i c  a c i d  (HC1) as t h e  aqueous phase i n  f u e l  r e c y c l e  are 
surveyed .  Ava i l ab le  d a t a  are s u f f i c i e n t  t o  sugges t  t h a t  
t h e  s e p a r a t i o n  of a c t i n i d e s  and f i s s i o n  p roduc t s  i n  an  
HC1-trialkylamine sys tem can  be a t  l e a s t  e q u a l  t o  t h a t  
i n  t h e  Purex p rocess .  Advantages o f  t h e  HC1 sys tem are: 
s i m p l e r  o p e r a t i o n  o f  t h e  of f -gas  system, b e t t e r  separa-  
t i o n  o f  neptunium from uranium and plutonium, b e t t e r  
c o n t r o l  o f  t h e  o x i d a t i o n  states of  t h e  d i s s o l v e d  spe- 
c i e s ,  and s i m p l e r  r e c y c l e  of t h e  ac id .  A p o s s i b l e  
advantage  i s  more complete d i s s o l u t i o n  of t h e  f i s s i o n  
p r o d u c t s ,  l e a v i n g  very  l i t t l e  i n s o l u b l e  r e s i d u e .  Dis- 
advan tages  inc lude :  t h e  l a c k  of development of methods 
f o r  d i s s o l u t i o n  of ox ide  f u e l  i n  H C 1 ,  t h e  s p a r s i t y  of 
d i s t r i b u t i o n  d a t a ,  t h e  requi rement  f o r  p rocess ing  equip- 
ment c o n s t r u c t e d  of tan ta lum,  p o s s i b l e  compl i ca t ions  i n  
t h e  was te-handl ing  system, and t h e  d i s s o l u t i o n  of much 
o f  t h e  c l add ing  i n  t h e  case of s t a i n l e s s - s t e e l  c l a d  
f u e l .  Systems u s i n g  H C l  a r e  n o t  a t t r a c t i v e  a s  r ep lace -  
ments f o r  Purex; however, t h e r e  may be advantages  t o  
t h e i r  u s e  i n  some s p e c i a l  a p p l i c a t i o n s .  

INTRODUCTION 

The Purex sys tem f o r  p rocess ing  s p e n t  nuc lea r  f u e l s  u s e s  a t r i b u -  
t y l  phosphate (TBP) e x t r a c t a n t  i n  a normal hydrocarbon d i l u e n t  t o  
e x t r a c t  uranium and plutonium from a n i t r i c  a c i d  s o l u t i o n  of s p e n t  
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340 MAILEN AND BELL 

f u e l .  The chemica l  c o n d i t i o n s  of t h e  o r i g i n a l  Purex sys tem were par- 
t i a l l y  d i c t a t e d  by t h e  f a c t  t h a t  s t a i n l e s s  s t ee l  w a s  t h e  on ly  commer- 
c i a l l y  a v a i l a b l e ,  c o r r o s i o n - r e s i s t a n t  c o n s t r u c t i o n  m a t e r i a l .  Other 
d i s s o l v e n t s ,  such  a s  hydroch lo r i c  o r  s u l f u r i c  a c i d s ,  were n o t  con- 
s i d e r e d  s i n c e  t h e y  a r e  n o t  compat ib le  w i t h  s t a i n l e s s  steel .  Recent ly ,  
t an t a lum equipment has  become a v a i l a b l e  t h a t  can be  used  i n  o p e r a t i o n s  
r e q u i r i n g  h o t  HC1. Z i r ca loy  o r  Haste1loy-C equipment can  a l s o  b e  used  
i n  o p e r a t i o n s  w i t h  H C 1  a t  ambient tempera ture  (1). S ince  a major por- 
t i o n  o f  t h e  equipment expense i n  a f u e l  r ep rocess ing  f a c i l i t y  r e s u l t s  
from t h e  f a b r i c a t i o n  c o s t s ,  r a t h e r  t han  t h e  c o s t  of  materials ( t h e  
major c o s t  of  a r e p r o c e s s i n g  f a c i l i t y  i s  f o r  t h e  c o n c r e t e  e n c l o s u r e ) ,  
t h e  a d d i t i o n a l  c o s t  of u s i n g  such  c o r r o s i o n - r e s i s t a n t  equipment would 
be r e l a t i v e l y  s m a l l .  The re fo re ,  i t  may be u s e f u l  t o  reexamine t h e  
p o s s i b l e  u s e  of  aqueous systms o t h e r  t han  t h o s e  u s i n g  n i t r i c  a c i d  
(HNO3) f o r  p rocess ing  f u e l s .  In f a c t ,  one f lowshee t  has  a l r e a d y  been 
proposed f o r  r e p r o c e s s i n g  thorium-uranium f u e l s  i n  an  HC1 sys tem ( 2 ) .  

DISCUSSION 

D i s s o l u t i o n  

F u e l  d i s s o l u t i o n  i n  HC1 has  n o t  been e x t e n s i v e l y  s tud ied .  
Although m e t a l l i c  f u e l s  would d i s s o l v e  d i r e c t l y  i n  H C 1 ,  t h e r e  i s  con- 
c e r n  about  t h e  hydrogen g iven  o f f  du r ing  d i s s o l u t i o n .  It would be 
prudent  t o  d i l u t e  t h e  hydrogen t o  below t h e  e x p l o s i v e  l i m i t  and t o  
c a t a l y t i c a l l y  o x i d i z e  i t  immediately.  The remainder of t h i s  d i scus-  
s i o n  of d i s s o l u t i o n  w i l l  be  concerned w i t h  r e p r o c e s s i n g  of t h e  more 
p r e v a l e n t  ox ide  f u e l s .  

Uranium ox ide  (UOp)  w i l l  n o t  d i s s o l v e  r e a d i l y  i n  HC1. Dissolu- 
t i o n  of UO2 i n  HNO3 and o t h e r  d i s s o l v e n t s  i s  favored  by t h e  o x i d a t i o n  
o f  U ( 1 V )  t o  U ( V 1 )  o r  by t h e  format ion  of s t r o n g  complexes. Thus, t h e  
d i s s o l u t i o n  of ox ide  f u e l  i n  HC1 w i l l  l i k e l y  r e q u i r e  t h e  a d d i t i o n  of 
o x i d i z i n g  r e a g e n t s .  Scout ing  tes ts  by t h e  a u t h o r s  have shown t h a t ,  i n  
t h e  absence  o f  a n  o x i d i z i n g  a g e n t ,  d i s s o l u t i o n  of U O p  i n  HC1 does  n o t  
occur  a t  a s i g n i f i c a n t  r a t e .  Sparging w i t h  a i r  i s  n o t  s u f f i c i e n t  t o  
enhance d i s s o l u t i o n ,  bu t  t h e  a d d i t i o n  of hydrogen peroxide  H202 t o  h o t  
4 M H C 1  r e s u l t e d  i n  t h e  immediate appearance  o f  u r a n y l  c o l o r .  Disso- 
l u t i o n  ceased  q u i c k l y ,  p robably  due t o  decomposi t ion  o f  t h e  H202 i n  
t h e  h o t  HC1. The optimum d i s s o l u t i o n  c o n d i t i o n s  r e q u i r e  a ba lance  
between t h e  f a c t o r s  which i n c r e a s e  t h e  rate o f  d i s s o l u t i o n  ( i n c r e a s e d  
t empera tu re ,  HC1 c o n c e n t r a t i o n ,  and H20p c o n c e n t r a t i o n ) ,  and t h o s e  
which cause  decomposi t ion  of H202 ( i n c r e a s e d  tempera ture  and HC1 
c o n c e n t r a t i o n ) .  If  pe rox ide  cannot  be  used ,  because of s a f e t y  con- 
s i d e r a t i o n s  o r  i t s  i n s t a b i l i t y  i n  t h e  d i s s o l v e n t  (pe rox ide  decompo- 
s i t i o n  is c a t a l y z e d  by t h e  p re sence  of i r o n ) ,  o t h e r  o x i d a n t s  would be 
necessa ry .  High-fired p l u t o n i a  d i s s o l v e s  s lowly  i n  concen t r a t ed ,  h o t  
HC1,  ( 3 )  b u t  t h e  d i s s o l u t i o n  rates i n  modest c o n c e n t r a t i o n s  o f  HC1,  
and p a r t i c u l a r l y  as a minor component of a U O p  mat r ix ,  are unknown. 
The e f f e c t i v e n e s s  of HC1 f o r  t h e  d i s s o l u t i o n  of t h e  f i s s i o n  p roduc t s  
i s  n o t  known, b u t  i t  can  b e  e s t i m a t e d  by examining t h e  chemical forms 
o f  t h e  f i s s i o n  p roduc t s  i n  t h e  f u e l  ( 4 )  t h e i r  d i s s o l v a b i l i t y  i n  HC1,  
and t h e  s o l u b i l i t i e s  of t h e  c h l o r i d e s  formed (Table  1). 
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TABLE 1 
Forms and S o l u b i l i t i e s  of F i s s i o n  Products  

Element L ike ly  form D i  s s o l v a b i l i t y  
i n  H C 1  

S o l u b i l i t y  
of c h l o r i d e  

Se 
R r  
Rb 
Sr 
Z r  
Nb 
Mo 
Tc 
Ru 
Rh 
Pd 
Ag 
Sb 
T e  
I 
cs  
Ra 

Rare  e a r t h s  

s e l e n i d e  
bromide 
o x i d e ,  i o d i d e  
ox ide  
ox ide  
oxide  
a l l o y a ,  ox ide  
a l l o y a  
alloys 
a l l o y a  
alloys 
m e t a l l i c  
m e t a l l i c  
t e l l u r i d e  
i o d i d e  
u r a n a t e ,  i o d i d e  
oxide  
oxide  

Y e s  
Yes 
Yes 
Yes 
probable  
low 
p a r t i a l  
p a r t i a l  
p a r t i a l  
p a r t i a l  
p a r t i a l  
Yes 
Yes 
Yes 
Yes 

Yes 
yes  

yes  

oxide  s o l u b l e  
s o l u b l e  
s o l u b l e  
s o l u b l e  
s o l u b l e  
s o l u b l e  
s o l u b l e  
s o l u b l e  
s o l u b l e  
s o l u b l e  
s o l u b l e  
s o l u b l e  as AgC12- 
s o l u b l e  
s o l u b l e  as Te02 
s o l u b l e  
s o l u b l e  
s o l u b l e  
s o l u b l e  

a P r e s e n t  as nob le  metal a l l o y .  

A s  can  be seen ,  most of t h e  f i s s i o n  p roduc t s  w i l l  d i s s o l v e .  
S i l v e r  w i l l  form t h e  s o l u b l e  d i c h l o r i d e  complex i n  concen t r a t ed  
c h l o r i d e  s o l u t i o n .  Recent t e s t s  by t h e  a u t h o r s  i n d i c a t e  t h a t  t h e  noble  
m e t a l  a l l o y  i s  n o t  r e a d i l y  s o l u b l e .  I n t e r a c t i o n s  i n  s o l u t i o n  may form 
i n s o l u b l e  compounds such  as Cs2PdClg (5 ) .  D i s so lu t ion  of most f i s s i o n  
p r o d u c t s  i n  H C 1  i s  n o t  g r e a t l y  d i f f e r e n t  from t h a t  i n  HN03. 

The a u t h o r s  have r e c e n t  r e s e a r c h  r e s u l t s  which i n d i c a t e  t h a t  t h e  
s t a i n l e s s  s tee l  c l add ing  would be  comple te ly  d i s s o l v e d  i n  HC1,  e l i m i -  
n a t i n g  t h e  need f o r  subsequent  handl ing .  Th i s  would, however, t h e n  
i n c r e a s e  t h e  c o n c e n t r a t i o n s  of  i r o n  and o t h e r  s t a i n l e s s  s t ee l  c o w  
ponents  i n  t h e  s o l v e n t  e x t r a c t i o n  system. The complete d i s s o l u t i o n  of 
t h e  s t a i n l e s s  s tee l  c l a d d i n g  would e l i m i n a t e  one waste stream bu t  would 
add s i g n i f i c a n t l y  t o  t h e  h igh - l eve l  was te .  Z i r ca loy  c l add ing  would n o t  
d i s s o l v e  a p p r e c i a b l y  i n  HC1. 

I f  t h e  r e a c t o r  f u e l  i s  d i s s o l v e d  i n  a mix tu re  of HC1 and H202 ( o r  
by t h e  u s e  of  o t h e r  o x i d a t i o n  a g e n t s ) ,  t h e  o x i d a t i o n  s t a t e  of  t h e  
m u l t i v a l e n t  e l emen t s  w i l l  be f i x e d ,  u n l e s s  a s p e c i a l  s t e p  i s  added t o  
e f f e c t  a change. Table  2 p r e s e n t s  a l i s t i n g  o f  t h e  v a r i o u s  o x i d a t i o n /  
r e d u c t i o n  i o n i c  coup les  and t h e i r  o x i d a t i o n  p o t e n t i a l  i n  v a r i o u s  media 
(6,7). Oxidat ion  p o t e n t i a l s  f o r  nonch lo r ide  s o l u t i o n s  may n o t  app ly  i n  
t h e  c h l o r i d e  system. It i s  known t h a t  o x i d a t i o n  by H202 y i e l d s  a mix- 
t u r e  o f  P u ( 1 I I )  and Pu(IV) i n  6 E H C 1  (8).  
p o t e n t i a l  o f  t h e  s o l u t i o n  f o r  s o l v e n t  e x t r a c t i o n ,  t h e  uranium would be 
p r e s e n t  as U(VI), neptunium as Np(V), i r o n  as F e ( I I 1 ) .  and i o d i n e  as 

I f  t h i s  i s  t aken  as t h e  
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TABLE 2 
Oxida t ion  P o t e n t i a l s  f o r  Various I o n i c  Couples 

Ionic 
coup le  

P o t e n t i a l  
(V) Medium Reference  

Ru( 2+) / (3+) -0.084 1-6 M HC1 Weast ( 7 )  
Mo(O ) / (6+) 0 Weast (7 )  
NP( 3+) /(4+) 0.14 1 - M HC1 Heslop ( 6 )  
Sb(0 ) / (3+)  0.212 Weast ( 7 )  
u(4+) / (6+)  0.334 Weast (7 )  
%(3+)/(5+) 0.344 2 M HC1 Weast ( 7 )  
Tc(0 ) / (7+)  0.47 Heslop ( 6 )  
I( l - ) / ( O )  0.53 Heslop ( 6 )  
Te ( 0) / (4+) 0.63 2.5 M HC1 Weast (7)  
Sb (3+)/(5+) 0.64 Weast ( 7 )  
s e (  0 )  / (4+)  0.74 Weast ( 7 )  
Np(4+)/(5+) 0.74 1 - M HC1 Heslop (6 )  
Fe(2+) / (3+) 0.77 Heslop ( 6 )  
W 3+1/ (4+) 0. 8 5 8  2 M H C 1  Weast ( 7 )  
Pu( 3+) / (4+)  0.97 1 HC1 Heslop ( 6 )  
pu( 4+) / (6+) 1.052 1 R HC1 Weast ( 7 )  
C r  (3+)  / (6+) 1.1 2 R H~SO, ,  Weast ( 7 )  
Np(5+)/(6+) 1.14 1 - HC1 Heslop ( 6 )  
Se (4+) / (6+)  1.15 Weast ( 7 )  
1(0)/(5+) 1.19 Heslop ( 6 )  
Ce(3+)/(4+) 1.28 HC1 Heslop ( 6 )  
Pd (2+) / (4+)  1.29 Chlor ide  Weast (7 )  
I ( O ) / ( 7 + )  1.38 Heslop ( 6 )  
1(0)/(1+) 1.45 Heslop (6 )  
Co( 2+)/ (3+) 1.84 Heslop ( 6 )  
Am(3+)/(4+) 2.4 Heslop ( 6 )  

- 

- 

- 

I(0). 
p o t e n t i a l  of t h e  s o l u t i o n ;  f o r  example, i f  t h e  f u e l  i s  d i s s o l v e d  i n  
h y d r o c h l o r i c  a c i d  w i t h  C e ( I V )  p r e s e n t ,  t h e  p o t e n t i a l  would i n c r e a s e  t o  
-1.28 V. Under t h e s e  c o n d i t i o n s ,  t h e  neptunium and plutonium would be 
h e x a v a l e n t ,  and t h e  i o d i n e  would l i k e l y  be pen tava len t .  

Other o x i d a t i o n  s ta tes  may be achieved  by changing t h e  o x i d a t i o n  

One p o s s i b l e  problem w i t h  t h e  u s e  of  hydrogen peroxide  i n  d i s s o l u -  
t i o n  i s  t h e  fo rma t ion  of i n s o l u b l e  pe rox ides  of  uranium o r  plutonium. 
The e q u i l i b r i u m  s o l u b i l i t y  f o r  uranium pe rox ide  i s  g iven  by: ( 9 )  

KU = [U022+][H202]/[H+]2 = 1.94 x 

and t h a t  f o r  plutonium peroxide  is  given by (10): 
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TABLE 3 
S o l u b i l i t i e s  of  Uranium and Plutonium Peroxides  

Molar concen t r a t ions  
H+ H2 02 

1 0.1 
1 1.0 
2 0.1 
2 1.0 
3 0.1 
3 1.0 
4 0.1 
4 1.0 
5 0.1 
5 1.0 

Molar s o l u b i l i t i e s  
Uranium Plutonium 

~ 

1.94 x 6.64 x 10-4 

7.76 x 1.06 x 

1.75 x 10-1 5.4 x lo-* 
1.75 x 1.7 x 10-3 
3.1 x 10-1 1.7 x 10-1 
3.1 x 5.8 x 10-3 
4.85 x 10-1 4.15 x 10-1 
4.85 x 1.31 x 10-2 

1.94 10-3 2.1 10-5 

7.76 x 10-3 3.36 10-4 

These r e l a t i o n s h i p s  w e r e  used t o  c a l c u l a t e  t h e  s o l u b i l i t i e s  given i n  
Tab le  3 f o r  v a r i o u s  HC1 and H202 concen t r a t ions .  

These d a t a  i n d i c a t e  t h a t  s o l u b i l i t i e s  of t h e  peroxides  are s u f f i c i e n t  
f o r  d i s s o l u t i o n  of  f u e l  i n  >5 M H C l  w i th  r easonab le  l e v e l s  of H202. 
The s o l u b i l i t i e s  are n o t  g r e a t  enough t o  a l low adding a l l  t h e  H202 
i n i t i a l l y ;  a cont inuous o r  p e r i o d i c  a d d i t i o n  p rocess  would be  
necessary.  

Off-Gas System 

Operat ion of  t h e  d i s s o l v e r  off-gas  system should be s imple r  i n  HC1 
The on ly  v o l a t i l e  elements t o  be expected are than  i n  t h e  HNO3 system. 

t h e  rare g a s e s ,  K r  and X e ,  1 2 ,  and a s m a l l  amount of 3H2. 
t i o n  of  t h e  i o d i n e  from HC1,  assuming t h a t  t h e  s o l u t i o n  p o t e n t i a l  i s  
p rope r  f o r  t h e  e l emen ta l  form t o  be s t a b l e ,  would be more d i f f i c u l t  
t han  from n i t r i c  a c i d ,  because of t h e  complexing of i o d i n e  by c h l o r i d e  
t o  y i e l d  t h e  I 2 C 1 -  i on .  The equ i l ib r ium cons tan t  f o r  t h e  formation of  
t h i s  i o n  i s  -2.5; t h u s ,  only -0.077 of t h e  i o d i n e  would be p r e s e n t  as 
f r e e  I p  (11). I f  t h e  d i s t r i b u t i o n  c o e f f i c i e n t  of f r e e  I2 from HC1 t o  
t h e  off-gas i s  68 [ t h e  same as  t h a t  from water t o  a i r  (12)], t hen  t h e  
o v e r a l l  d i s t r i b u t i o n  c o e f f i c i e n t  f o r  a l l  i o d i n e  s p e c i e s ,  i n c l u d i n g  
those  which are n o n v o l a t i l e ,  i s  -5. This  should be s u f f i c i e n t  f o r  
r e l a t i v e l y  easy  removal of  t h e  iod ine .  
in t h e  off-gas  would a l low t h e  u s e  of  impregnated a c t i v a t e d  cha rcoa l  as 
an  i o d i n e  t r a p ,  without  t h e  p o s s i b i l i t y  of i g n i t i o n  (13) o r  explosion 
(13,14). The i o d i n e  could a l t e r n a t i v e l y  be  adsorbed on lead- ,  
potassium-, o r  cadmium-exchanged z e o l i t e s  (15-19). These materials, 
wh i l e  e x c e l l e n t  adso rben t s  f o r  i o d i n e ,  are l e s s  e f f e c t i v e  i n  t h e  pres- 
ence of NO, and moisture .  Oxidat ion procedures  f o r  t r a p p i n g  i o d i n e ,  
such as t h e  Iodox (20 )  or e l ec t rochemica l  methods (21), would o p e r a t e  
b e t t e r  without  t h e  r e d u c t i v e  load of  t h e  n i t r o g e n  ox ides .  It is  obvi- 
ous  t h a t  t h e  e l i m i n a t i o n  of  HNO3 would g r e a t l y  i n c r e a s e  t h e  o p t i o n s  f o r  
i o d i n e  hand l ing  and should s i g n i f i c a n t l y  s i m p l i f y  and improve t h e  over- 

Vo la t i l i za -  

The absence of  n i t r o g e n  ox ides  

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
3
:
1
4
 
2
5
 
J
a
n
u
a
r
y
 
2
0
1
1



352  MAILEN AND BELL 

a l l  i o d i n e  r e t e n t i o n  system, I f  recovery of krypton and xenon i s  
r e q u i r e d ,  t h e  absence of n i t r o g e n  ox ides  would a l s o  be b e n e f i c i a l  (22) .  
I n  t h e  n i t r i c  a c i d  system, r e c y c l e  of  t h e  n i t r o g e n  ox ides  r e q u i r e s  a 
r e a c t i o n  system f o r  t h e  recombination of t h e  n i t r o g e n  ox ides  wi th  oxy- 
gen and water (23 ) ;  s imple condensat ion s e r v e s  f o r  t h e  recycle of H C 1  
from t h e  o f f -gas  stream. For a l l  t h e s e  r easons ,  t h e  off-gas  t reatment  
f a c i l i t y  f o r  a n  HC1 system would be much less complicated and less 
expensive than  t h a t  f o r  an  HNO3 system. 

Solvent E x t r a c t i o n  

The use  of  a c h l o r i d e  system i n  tantalum equipment l e a d s  t o  t h e  
p o s s i b i l i t y  of s i g n i f i c a n t  changes i n  t h e  s o l v e n t  e x t r a c t i o n  system. 
C e r t a i n l y ,  t h e  d i l u e n t  could be  changed t o  a c h l o r i n a t e d  hydrocarbon 
o r  a Freon-type compound, s i n c e  co r ros ion  of process  equipment by 
c h l o r i d e  would n o t  b e  a problem. Aromatic d i l u e n t s  could be considered 
i n  t h e  absence of  n i t r a t i n g  agen t s .  The u s e  of  a nonhydrocarbon d i l u -  
e n t  would e l i m i n a t e  t h e  p o s s i b i l i t y  of f i r e s  caused by t h e  d i l u e n t  and 
would allow u s e  of a much h ighe r  temperature  i n  t h e  s o l v e n t  e x t r a c t i o n  
system, when des i r ed .  
t empera tu res  a l s o  increases t h e  p o t e n t i a l  for making s e p a r a t i o n s  by 
temperature  v a r i a t i o n .  

The a v a i l a b i l i t y  of a wider range of o p e r a t i n g  

A complete d i s c u s s i o n  of t h e  p o s s i b l e  s o l v e n t  e x t r a c t i o n  flow- 
s h e e t s  i n  a c h l o r i d e  separation system i s  beyond t h e  scope of t h i s  
paper;  we w i l l  b r i e f l y  examine t h e  u s e  of  t e r t i a r y  amines i n  a romat i c  
d i l u e n t s  a s  an  example. The d i s t r i b u t i o n  d a t a  f o r  t h i s  system (from 
t h r e e  sou rces )  are summarized i n  Tab le  4. For t h i s  d i s c u s s i o n ,  i t  is  
assumed t h a t  t h e  o x i d a t i o n  p o t e n t i a l  of t h e  d i s s o l v e r  s o l u t i o n  i s  such 
t h a t  t h e  uranium i s  hexava len t ,  the plutonium i s  l a r g e l y  t e t r a v a l e n t ,  
t h e  neptunium i s  p e n t a v a l e n t ,  t h e  americium i s  pen tava len t ,  and t h e  
i r o n  i s  t r i v a l e n t .  Th i s  c o n d i t i o n  could p r e v a i l  i f  t h e  d i s s o l u t i o n  
were accomplished i n  HC1 w i t h  H202 o r  i f  t h e  d i s s o l v e r  s o l u t i o n ' s  redox 
p o t e n t i a l  has  been o the rwise  a d j u s t e d  t o  a similar value.  Figure 1 
shows t h e  d i s t r i b u t i o n  c o e f f i c i e n t s  of U(V1) and F'u(1V) between HC1 and 
1 v o l  X t r i o c t y l a m i n e  ( 2 4 ) .  From t h e s e  d a t a ,  i t  i s  obvious t h a t  both 

TABLE 4 
Ava i l ab le  D i s t r i b u t i o n  Data €or HC1-Tertiary Amine System 

Ex t r a c t a n t  D i  l u e n t  Elements Reference 
~~ ~- 

Adogen 354a Aromati& U, Ru, Z r ,  Mo, C e ,  

Alamine 336a Diethylbenzene F i s s i o n  and c o r r o s i o n  
Nb. Fe Thomas (1) 

p roduc t s  p lus  U Seeley (25)  
Tri-n-octyl-  Xylene U, NP 

amine Keder ( 2 4 )  

aMixture of s t r a i g h t - c h a i n  t e r t i a r y  amines; mainly t r i o c t y l -  and 

bMixture;  p r i m a r i l y  of  methyl-, e thyl- ,  d i e thy l -  and t r imethyl-  
t r idecy l -  amines . 
benzenes. 
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F i g .  1. Mstribution coef f ic ients  of uranium and plutonium from 
hydrochloric acid t o  1% trioctylamine i n  xylene [Keden ( 2 4 ) ] .  
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354 MAILEN AND BELL 

elements can be ex t rac ted  from -5 5 HC1 with d i s t r i b u t i o n  c o e f f i c i e n t s  
of -20. 
ex t rac tab le  than the  uranium. 
remove the plutonium ( d i s t r i b u t i o n  coef f ic ien t  of -0.017 while the  
uranium w i l l  l a r g e l y  be re ta ined  ( d i s t r i b u t i o n  coef f ic ien t  of -1.5); 
t h i s  i s  a separa t ion  f a c t o r  of -150. 
d a t a  i n  perspect ive,  i t  is necessary t o  determine the  e f f e c t s  of HC1 
concentrat ion on t h e  ex t rac t ion  of U ,  Pu, and Np species .  These 
r e s u l t s  are given as power e f f e c t s  ( t h e  s lope of t h e  d i s t r i b u t i o n  v s  
HC1 concentrat ion on a log-log p l o t )  i n  Table 5 f o r  t h e  var ious re fer -  
ences. 

A t  lower HC1 concentrat ions.  t h e  plutonium is  much less 
Thus, s t r i p p i n g  with -3 M HC1 w i l l  

In order  t o  place t h e  l i t e r a t u r e  

Figure 2 shows t h e  uranium d a t a  from t h r e e  l i t e r a t u r e  sources 
(1, 2 4 ,  25), with Keder's l i n e  (24) being estimated from a s i n g l e  point  
a t  0.1 5 and the  experimentally determined e f f e c t  of HC1 concentration 
on t h e  ex t rac t ion .  The plutonium l i n e  i s  a l s o  from Keder (24)  and i s  
estimated from a s i n g l e  point  a t  0.1 
experimentally determined e f f e c t  of H C 1  concentration on the  extrac- 
t ion .  
M HC1 i n t o  0.1 
of -100 and a uranium d i s t r i b u t i o n  c o e f f i c i e n t  of -5 t o  100. Since 
Keder's da ta  i n d i c a t e  t h a t  the  e f f e c t  of amine concentration i s  t h e  
same for  both uranium and plutonium, we would expect near ly  t h e  same 
separa t ion  f a c t o r s  a t  d i f f e r e n t  amine concentrations. Str ipping with 
3 M H C 1  would give a plutonium d i s t r i b u t i o n  c o e f f i c i e n t  of -0.2 and a 
uranium d i s t r i b u t i o n  c o e f f i c i e n t  between 1.2 and 12, with separat ion 
f a c t o r s  of 6 t o  60. Again, t h e  f a c t  t h a t  Keder's d a t a  give a separa- 
t i o n  f a c t o r  of -150 ind ica tes  t h a t  the  l a r g e r  separa t ion  f a c t o r  i s  
l i k e l y .  Rased on these l i t e r a t u r e  da ta ,  t h e  separa t ion  of uranium and 
plutonium in t h i s  system should be simple; both have l a r g e  d i s t r i b u t i o n  
c o e f f i c i e n t s ,  requi r ing  f e w  e x t r a c t i o n  s tages .  The plutonium can be 
s e l e c t i v e l y  s t r ipped ,  leaving t h e  uranium i n  t h e  organic  phase. 

amine concentration plus  the  

From t h i s  p l o t ,  t h e  ex t rac t ion  of uranium and plutonium from -5 
amine should give a plutonium d i s t r i b u t i o n  coef f ic ien t  

TABLE 5 
Power Effec t  of HC1 Concentration on Extract ion 

of  Actinides by Trialkylamines 

Power Effec t ,  (Reference No.) 
Species Thomas Seeley Keder 

(1) (25) (24) 

- 2  -4  - 4a 
-11 - 5a 
-12 - 4a 

%(VI) has a maximum d i s t r i b u t i o n  from -7 M HC1 
(24); a maximum w a s  not shown by da ta  from t h e  o t h e r  
references.  
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Fig. 2. Distribution coefficients of uranium and plutonium 
from hydrochloric acid to 0.1 g trialkylamine in aromatic 

diluent. Plutonium and uranium lines from Keder ( 2 4 )  
are estimated from single data points at 4 M HC1. 
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356 MAILEN AND BELL 

F i g u r e  3 i l l u s t r a t e s  d a t a  on t h e  d i s t r i b u t i o n  c o e f f i c i e n t s  of  the 
most important  e x t r a c t a b l e  f i s s i o n  p roduc t s  and i r o n  vs  t h e  HC1 con- 
c e n t r a t i o n .  Zirconium, chromium, and t h e  rare e a r t h s  have i n s i g n i f i -  
c a n t  d i s t r i b u t i o n  c o e f f i c i e n t s  (25). If t h e  i n i t i a l  e x t r a c t i o n  i s  from 
5 M HC1,  o n l y  Pd, T c ,  and Fe w i l l  have d i s t r i b u t i o n  c o e f f i c i e n t s  >l. 
If-a s t a i n l e s s - s t e e l - c l a d  f u e l  i s  being processed,  t h e  mole r a t i o  of 
i r o n  t o  a c t i n i d e s  could be  as h i g h  as 0.18. 
s e p a r a t i n g  t h e  a c t i n i d e s  (U and F'u) and t h e  f i s s i o n  products  Ru, Mo, 
and Nb should be -200; t h u s ,  i t  should be p o s s i b l e  t o  o p e r a t e  t h e  
e x t r a c t i o n  system t o  g i v e  a good sepa ra t ion .  I f  the plutonium i s  
s t r i p p e d  w i t h  3 M HC1, a c l e a n  s e p a r a t i o n  from Fe, Pd, and Tc should be 
obtained.  The o r g a n i c  stream would then  c o n t a i n  U, Pd, T c ,  and Fe ( i f  
s t a i n l e s s - s t e e l - c l a d  f u e l  i s  processed) .  If  t h e  uranium is  subsequent ly  
s t r i p p e d  w i t h  - 1 M  HC1 (uranium d i s t r i b u t i o n  c o e f f i c i e n t  of  0.1 t o  
0 . 3 ) ,  t h e  uraniurn could be s e l e c t i v e l y  sepa ra t ed  from t h e  i r o n  
( d i s t r i b u t i o n  c o e f f i c i e n t  of - 6 ) ,  t h e  palladium ( d i s t r i b u t i o n  coef- 
f i c i e n t  o f  - 5 0 ) ,  and t h e  technet ium ( d i s t r i b u t i o n  c o e f f i c i e n t  of  -300). 
I f  a h igh  recovery l e v e l  o f  uranium and complete s e p a r a t i o n  from i r o n  
a r e  r e q u i r e d ,  i t  may be d e s i r a b l e  t o  r e d u c t i v e l y  s t r i p  t h e  i r o n  from 
t h e  s o l v e n t .  

The s e p a r a t i o n  f a c t o r s  f o r  

Solvent Cleanup 

So lven t  deg rada t ion  should be much lower i n  an  HC1 system, s i n c e  a 
s i g n i f i c a n t  p o r t i o n  of  t h e  s o l v e n t  deg rada t ion  i n  t h e  Purex system i s  
due t o  a t t a c k  on t h e  TBP and t h e  d i l u e n t  by n i t r i c  and n i t r o u s  ac ids .  
However, i r r a d i a t i o n  of  HC1 w i l l  g e n e r a t e  c h l o r i n e  f r e e  r a d i c a l s ,  and 
these are expected t o  s lowly conve r t  t h e  a romat i c  d i l u e n t s ,  i f  used,  t o  
c h l o r i n a t e d  c y c l i c  compounds. S tud ie s  i n  t h i s  area would be u s e f u l ,  i f  
such a p rocess  i s  contemplated.  
system are less a problem i n  t h e  formation of i n t e r f a c i a l  c ruds  and 
r e t a i n e d  c a t i o n s  than  a r e  those  from TBP, s i n c e  t h e  dialkylamines are 
poorer  complexing agen t s  t han  t h e  t r i a l k y l a m i n e s  (25) .  

"he degrada t ion  p roduc t s  of t h e  amine 

One necessa ry  cleanup o p e r a t i o n  i n  t h e  HC1 system w i l l  be t h e  
removal of t h e  r e t a i n e d  f i s s i o n  and co r ros ion  products .  Complete re- 
moval of pal ladium and technet ium may r e q u i r e  a r e d u c t i v e  s t r i p p i n g  o r  
t h e  u s e  of  a complexing agent .  
s e v e r a l  methods, i nc lud ing  a low-acid s t r i p ,  r e d u c t i v e  s t r i p ,  o r  a 
s t r i p  w i t h  a complexing agent .  

Other Approaches t o  Uranium/Plutonium P a r t i t i o n i n g  

The i r o n  can be removed by any o f  

It i s  p o s s i b l e  t h a t  t h e  s e p a r a t i o n  of uranium and plutonium could 
be  achieved by v a r i a t i o n s  i n  a c i d  concen t r a t ion  and temperature ,  s i n c e  
t h e  temperature  range of ope ra t ion  could be q u i t e  l a r g e  f o r  c h l o r i n a t e d  
d i l u e n t s .  

The s e p a r a t i o n  of  uranium and plutonium by valence adjustment com- 
bined w i t h  e x t r a c t i o n  o r  s t r i p p i n g  o p e r a t i o n s  should be easier i n  a 
c h l o r i d e  system. Plutonium(II1) i s  s t a b l e  i n  HC1 w i thou t  ho ld ing  reduc- 
t a n t s ,  as c o n t r a s t e d  w i t h  t h e  HNO3 system, where hydrazine i s  commonly 
added t o  d e s t r o y  n i t r i t e  which acts as a c a t a l y s t  t o  t h e  HNO3 ox ida t ion  
o f  h(II1) t o  F'u(1V).  E l e c t r o l y t i c  r e d u c t i o n  should a l s o  be more 
s t r a i g h t f o r w a r d  i n  t h e  HC1 system than  t h e  n i t r a t e  system, without  the 
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Fig. 3. Distribution coefficients of f i s s i o n  products and iron 
from hydrochloric acid to 0.1 Mtrialkylamine in aromatic 

Pd and Tc data from Seeley (25). 
dilllent. Ru, Mo, Nb, and Fe data from Thomas (1); 
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358 MAILF,N AND BELL 

n e c e s s i t y  of hydrazine add i t ion .  P h o t o l y t i c  r e d u c t i o n s ,  such as t h e  f o r -  
mat ion of U ( I V ) ,  shou ld  be  more e f f i c i e n t  i n  HC1 systems,  s i n c e  t h e  
absorbance of  o t h e r  components of t h e  s o l u t i o n  w i l l  be reduced, and 
r e v e r s e  r e a c t i o n s  should be  less important .  

Waste Handling 

Recovery o f  t h e  HC1 from t h e  waste would be by d i s t i l l a t i o n .  No 
decomposition of  HC1 would occur ,  whereas wi th  HNO3 t h e  n i t r o g e n  ox ides  
must be reformed i n t o  HNO3 t o  o b t a i n  complete r e c y c l e .  
a z e o t r o p i c  H C 1  would be - 6  M; concen t r a t ions  higher  t han  t h i s  should be 
avoided i n  the p rocess  t o  s i m p l i f y  t h e  a c i d  r ecyc le .  

The recovered,  

D e n i t r a t i o n  o f  t h e  waste would also n o t  be r e q u i r e d  wi th  an  HC1 
system, S o l u b i l i t i e s  should be a s  high o r  higher  t han  those  i n  a n i t r a t e  
system, a l lowing  waste concen t r a t ion  t o  proceed normally.  Waste ca l c ina -  
t i o n  would r e q u i r e  equipment r e s i s t a n t  t o  c h l o r i d e  a t t a c k ,  and t h e  o f f -  
g a s  systems should be designed t o  cope w i t h  w e t  HC1 and, f o r  g l a s s  waste 
forms, S i C 1 4 .  Pyrohydrolysis  of t h e  waste t o  convert  c h l o r i d e s  t o  ox ides  
might be  necessary.  Again, a n  a d d i t i o n a l  c o s t  f o r  p rocess ing  equipment 
m a t e r i a l s  r e s i s t a n t  t o  c h l o r i d e  a t t a c k  would be required.  

Ma te r i a l s  Options 

It would be advantageous i f  some p a r t s  of a r ep rocess ing  p l a n t  using 
H C I  could be made of  polymeric materials. Polyvinyl  c h l o r i d e  and Kynar 
materials o f f e r  some e x c e l l e n t  advantages,  e s p e c i a l l y  wi th  lower r ad ia -  
t i o n  and temperature  l e v e l s .  Such materials are c u r r e n t l y  used i n  com- 
merc i a l  p rocess ing  of nonnuclear materials i n  c h l o r i d e  systems. 

CONCLUSIONS 

Fue l  r ep rocess ing  us ing  an H C 1  system wi th  a t e r t i a r y  amine as t h e  
e x t r a c t a n t  appea r s  chemical ly  f e a s i b l e .  The advantages of t h i s  method 
are: 
and neptunium, (2)  s e p a r a t i o n  of uranium from plutonium without  u s e  of 
r e d u c t i v e  s t r i p p i n g ,  ( 3 )  improved off-gas  handl ing,  and ( 4 )  ease of 
r e c y c l e  of  t h e  HC1. Disadvantages of t h e  HC1 system inc lude :  (1) t h e  
requirement  f o r  tantalum p rocess ing  equipment,  ( 2 )  undeveloped d i s so lu -  
t i o n  methods f o r  oxide f u e l s ,  ( 3 )  s i g n i f i c a n t  d i s s o l u t i o n  of t h e  s t a i n -  
less steel c l add ing ,  and (4) p o s s i b l e  complicat ions i n  waste handling. 

The pr imary q u e s t i o n  i s  whether a chemical ly  f e a s i b l e ,  appa ren t ly  
advantageous,  HC1 s o l v e n t  e x t r a c t i o n  p rocess  should,  O K  can,  be  developed 
t o  compete w i t h  t h e  r e l a t i v e l y  mature Purex process .  The Purex p rocess  is  
an accepted,  proven method t h a t  i s  being commercialized i n  s e v e r a l  coun- 
tries and cons ide rab le  development work on f u e l  d i s s o l u t i o n  and so lven t  
e x t r a c t i o n  d i s t r i b u t i o n  c o e f f i c i e n t s  would be r equ i r ed  be fo re  an  H C 1  
p rocess  could be  competi t ive.  It seems u n l i k e l y  t h a t  funds f o r  t h e  
r e q u i r e d  RbD w i l l  be a v a i l a b l e  i n  t h e  f o r e s e e a b l e  f u t u r e .  Even i f  no 
t e c h n i c a l  impediments are found i n  the HC1 scheme compared wi th  t h e  Purex 
system, many man-years of  e f f o r t  would be r e q u i r e d  t o  develop t h e  new 
p rocess  t o  t h e  c u r r e n t  m a t u r i t y  of  Purex. Hence, a l though  some e f f o r t  t o  
e s t a b l i s h  a b e t t e r  d a t a  base f o r  an HC1 process  and i n c r e a s e  t h e  gene ra l  
knowledge of f u e l  r ep rocess ing  are j u s t i f i e d ,  i t  i s  probably i m p r a c t i c a l  
t o  pursue t h i s  new process .  

(1) good s e p a r a t i o n  of uranium and plutonium from f i s s i o n  products  
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